Zagdu Singh Charitable "Trust's (Regd.) ## THAKUR COLLEGE OF **ENGINEERING & TECHNOLOGY** (Approved by AICTE, Govt. of Maharashtra & Affiliated to University of Mumbai*) (Accredited Programmes by National Board of Accreditation, New Delhi**) A - Block, Thakur Educational Campus, Shyamnarayan Thakur Marg, Thakur Village, Kandivali (East), Mumbai - 400 101. Tel.: 6730 8000 / 8106 / 8107 Fax: 2846 1890 Email: tcet@thakureducation.org Website : www.tcetmumbai.in • www.thakureducation.org *Permanent Affiliated UG Programmes: *Computer Engineering *Electronics & Telecommunication Engineering * Information Technology (w.e.f.: A.Y. 2015-16 onwards) **1st time Accredited UG Programmes: • Computer Engineering • Electronics & Telecommunication Engineering • Information Technology **2nd time Accredited UG Programmes: • Computer Engineering • Electronics & Telecommunication Engineering • Information Technology • Electronics Engineering (3 years w.e.f.: 01-07-2016) TCET/FRM/IP-02/09 Revision: A ## **Semester Plan** (Theory) Semester: V Course: TE-EXTC Subject: RFMA Class: TE-B | S.No. | Bridge courses/Technology | Duration
(Week/hrs) | Modes
of
Learnin
g | Recommended Sources | |-------|---|------------------------|-------------------------------------|---| | 1. | Prerequisite course:
Wave Theory and Propagation | 06 Hours | Technol
ogy
Based
learning | Principles of Electromagentics -Sadiku Chapter 2 (Pg. No. 25 -70) Chapter 8(Pg. No.327-370) | # Class Room Teaching | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Comple
tion
Date | Resource
Book
Reference | Remarks | |-----------|---------------|---------------|--|---------------------------------|------------------------------------|-------------------------------|---------| | 1 | | L.1.1 | Syllabus orientation | PPT | 10/07 | | | | 2 | | L.1.2 | Outcome based education details | PPT | 13/07 | | | | 3 | 3 | L.1.3 | DB scale and Classification of antenna and their characteristics | Projector
and chalk
board | 14/07 | M3.9.1 | | | 4 | | L.2.1 | Condition for radiation and fundamentals of antenna | Chalk
board | 17/07 | M3.9.2 | | | Sr. | | | | | | | Remarks | |-----|---------------|---------------|--|------------------------------|------------------------------------|-------------------------------|---------| | No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Comple
tion
Date | Resource
Book
Reference | | | 5 | | | | | | | | | | | L.2.2 | Antenna directivity, gain, effective aperture and radiation resistance | Chalk
board | 18/07 | M3.9.4.3 | | | 6 | | | Fire two with the Free Issue Is | OL -II | | | | | | | L.2.3 | Friss transmission Formula and Numerical | Chalk
board | 19/07 | M3.9.5.17 | | | 7 | | | | | | | | | | | L.2.4 | Vector potential A for an electric current J with retardation | Chalk
board | 20/07 | M3.5 | | | 8 | | | | | | | | | | | L.3.1 | Vector potential F for an magnetic current source M with retardation | Chalk
board | 24/07 | M3.6 | | | 9 | | | | | | | | | | 4 | L.3.2 | Concept of Near and Far field and Numerical | Chalk
board | 25/07 | M3.9.4 | | | 10 | | | | | | | | | | | L.3.3 | Derivation of radiation, Induction and electrostatic field of infinitesimal dipole | Chalk
board | 26/07 | M4.8.2 | | | 11 | | | Downstion of radiction Industion | | | | | | | | L.3.4 | Derivation of radiation, Induction and electrostatic field of half dipole and Radiation resistance | Chalk
board | 27/07 | M4.8.14 | | | 12 | | | | Chalk | | | | | | | L.4.1 | Quarter wave mono pole and its radiation resistance | board | 31/07 | M4.8.1 | | | 13 | | | | Chalk | | | | | | | L.4.2 | Effect of Ground on the radiation of antenna | board | 01/08 | M4.2 | | | 15 | | L.4.2 | | Chalk
board | 01/08 | M4.2 | | | Sr. | | | | | | | Remarks | |-----|---------------|---------------|--|------------------------------|------------------------------------|-------------------------------|---------| | No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Comple
tion
Date | Resource
Book
Reference | | | 14 | | L.4.3 | Loop antenna its radiation pattern and application | Chalk
board | 02/08 | M4.8.18 | | | 15 | 1 | L.4.4 | High frequency behaviour of register, capacitor and inductor and its VI -characteristics | Chalk
board | 03/08 | M1.2 | | | 16 | | L.5.1 | Hazardous of Electromagnetic Radiation. | Chalk
board | 07/08 | M1.1.9 | | | 17 | | L.5.2 | Characteristics, structure and application of coaxial lines and strip lines | Chalk
board | 08/08 | M1.3.2 | | | 18 | | L.5.3 | High frequency behaviour of BJT,
FET and Diode its VI -
characteristics | Chalk
board | 09/08 | M1.4.1 | | | 19 | | L.5.4 | Micro strip and coplanar lines | Chalk
board | 10/08 | M1.4.2 | | | 20 | 5 | L.6.1 | Antenna arrays their application and classification | Chalk
board | 14/08 | M5.9.1 | | | 21 | | L.6.2 | Array of two isotropic point source and End fire array | Chalk
board | 16/08 | M5.9.2 | | | 22 | | L.7.1 | Broadside antenna array and principal of pattern multiplication | Chalk
board | 24/08 | M5.9.5 | | | Sr. | | | | Teaching | 5 | | Remarks | |-----|---------------|---------------|---|------------------|------------------------------------|-------------------------------|---------| | No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Aids
Required | Planned
/Comple
tion
Date | Resource
Book
Reference | | | 23 | | L.8.1 | Array factor for N element array | Chalk
board | 30/08 | M5.9.3 | | | 24 | | L.8.2 | Non uniform array Binomial and
Dolph Tschebyscheff array | Chalk
board | 31/08 | M5.9.4 | | | 25 | | L.9.1 | Numerical on uniform and non uniform array | Chalk
board | 04/09 | M5.9.6 | | | 26 | | L.9.2 | Yagi uda antenna | Chalk
board | 05/09 | M6.1 | | | 27 | 6 | L.9.3 | Horn antenna | Chalk
board | 06/09 | M6.9.8 | | | 28 | | L.9.4 | Helical antenna | Chalk
board | 07/09 | M6.9.3 | | | 29 | | L.10.1 | Different type of reflector used in UHF antenna | Chalk
board | 11/09 | M6.9.4 | | | 30 | | L.10.2 | Frequency independent structure and log periodic antenna | Chalk
board | 12/09 | M6.9.1 | | | 31 | | L.10.3 | Micro strip patch antenna | Chalk
board | 13/09 | M6.9.2 | | | Sr. | | | | Teaching | | | Remarks | |-----|---------------|---------------|---|------------------|------------------------------------|-------------------------------|---------| | No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Aids
Required | Planned
/Comple
tion
Date | Resource
Book
Reference | | | 32 | 2 | L.10.4 | Different types of periodic
structure, their characteristic
impedance and propagation
constant | Chalk
board | 14/09 | M2.1 | | | 33 | | L.11.1 | Image Parameter Method and image impedance of Asymmetrical network | Chalk
board | 18/09 | M2.9 | | | 34 | | L.11.2 | Transfer function for two port network | Chalk
board | 19/09 | M2.9 | | | 35 | | L.11.3 | Numerical on designing of composite filter using image parameter method | Chalk
board | 20/09 | M2.9 | | | 36 | | L.11.4 | Insertion loss method | Chalk
board | 21/09 | M2.10 | | | 37 | | L.12.1 | Characteristics of binomial and chebyscheff filter | Chalk
board | 25/09 | M2.11 | | | 38 | | L.12.2 | Numerical on designing of filter using insertion loss method | Chalk
board | 26/09 | M2.10 | | | 39 | | L.13.1 | Filter transformation and impedance change | Chalk
board | 03/10 | M2.1 | | | 40 | | L.13.2 | Frequency scaling, Band stop and
Band pass filter | Chalk
board | 04/10 | M2.15 | | | Sr.
No | Module
No. | Lesson
No. | Topics Planned
(Technology to be used) | Teaching
Aids
Required | Planned
/Comple
tion
Date | Resource
Book
Reference | Remarks | | |---------------------|--|--------------------|---|------------------------------|------------------------------------|-------------------------------|---------|--| | 41 | | L.13.3 | Richards transformation and
Kuroda's identity | Chalk
board | 05/10 | M2.1 | | | | 42 | | L.14.1 | Numerical on Richard transformation | Chalk
board | 12/10 | M2.16 | | | | 43 | | L.15.1 | Filter design analysis of infinite periodic structure | Chalk
board | 16/10 | M2.2 | | | | 44 | | L.15.2 | k- β diagram and wave velocities | Chalk
board | 17/10 | M2.1 | | | | 45 | | L.15.3 | Discussion on University paper | Chalk
board | 18/10 | Solution of paper | | | | Remark::
Course: | | Syllabus Coverage: | | Practice Session: | | Beyond Syllabus: | | | | | No. of (lectures planned)/(lecture taken): | | | | | | | | **Bridge courses Objective:** Bridging of gaps with respect to prerequisites and industry skills or to carryout research in signal processing field. (**20 Hrs / Semester / student**) | S.No. | Bridge courses/Technology | Duration
(Week/hrs) | Modes of
Learning | Recommended Sources | |-------|---|------------------------|----------------------------------|---| | 1 | Advanced course: Microwave Theory and Techniques (NPTEL Course) | 20 Hours | Technolo
gy Based
learning | Module No. 1 to 5
http://nptel.ac.in/syllabus/
117105029/ | ## Text Books:- • Costantine A. Balanis, "Antenna Theory Analysis And Design", John Wiley Publication - David M Pozar, "Microwave Engineering", John Wieley and Sons, Inc. Hobokenh, New Jersey, Fourth Edition, 2012 - John D. Kraus, "Antennas", Tata McGraw Hill publication. #### Reference Books: Annapurna Das and Sisir K Das, "Microwave Engineering", Tata McGraw Hill publication, New Delhi, Second Edition, 2009 ### Digital Reference: - Wikipedia - www.wiley.com/communication Technology/ Antenna & propagation Nikhil Tiwari Dr. Vinitkumar Dongre Dr. R. R. Sedamkar Name & Signature of Faculty Signature of HOD Signature of Principal /Dean (Academics) Date: Date: Date: ### Note: - Plan date and completion date should be in compliance - 2. Courses are required to be taught with emphasis on resource book, course file, text books, reference books, digital references - Planning is to be done for 15 weeks where 1st week will be AOP, 2nd -13th for effective teaching and 14th -15th week for effective 3. university examination oriented teaching, mock practice session and semester consolidation. - According to university syllabus where lecture of 4 hrs/per week is mentioned minimum 55 hrs and in case of 3 lectures per week minimum 45 lectures are to be engaged are required to be engaged during the semester and therefore accordingly semester planning for delivery of theory lectures shall be planned. - In order to improve score in NBA, faculty members are also required to focus course teaching beyond university prescribed syllabus and measuring the outcomes w.r.t learning course and programme objectives. - Text books and reference books are available in syllabus. Here only additional references w.r.t. non -digital/ digital sources can be written (if applicable) - Technology to be used in class room during lecture shall be written below the topic planned within the bracket.